(基本目標5)安全で安心な生活環境の形成

1. 大気

1-1 現状

大気汚染は、工場・事業場や自動車からの排出ガスなどを原因とする人間の社会活動により引き起こ されます。大気汚染物質には、直接排出される一次汚染物質と、一次汚染物質に自然条件などが働い てできる二次汚染物質があります。これらの物質は、人の健康や生活環境に悪影響を及ぼし、動植物 に被害を与える可能性があると言われています。そこで、国や県では、大気汚染防止法や埼玉県生活 環境保全条例などを定め、大気汚染物質の排出量の規制や、大気汚染物質を排出する事業所の指導等 を行っています。

| 越谷市は、平成 13 年度より大気汚染防止法の政令市の指定(工場を除く)、平成 14 年度より埼玉県 から大気汚染防止法(工場)の権限移譲を受け、大気中の有害物質等の常時監視や工場・事業場に対 する排出規制等の指導を行っています。

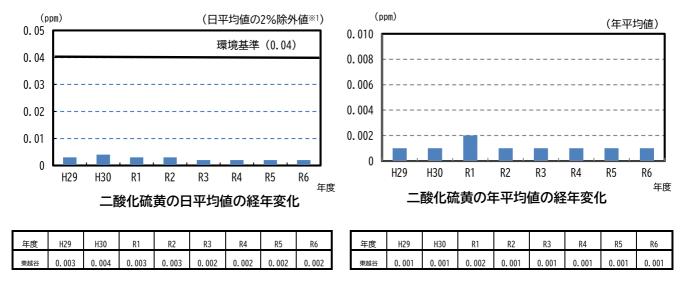
また、「環境基本法」では、大気汚染の防止に関し、人の健康と生活環境を保護するうえで維持する ことが望ましい基準として、主な大気汚染物質に対して「環境基準」を定めています。(巻末資料①参 照)

1-2 大気の調査監視

大気汚染対策を効果的に実施するための基礎資料を得るとともに、大気汚染の状況を把握するため、 大気汚染防止法に基づき、日本全国で大気汚染状況の常時監視が行われています。

市では、東越谷第二公園内(東越谷測定局)及び千間台第四公園内(千間台西測定局)に設置した 一般環境大気測定局で、市内の大気汚染状況の常時監視を行っています。

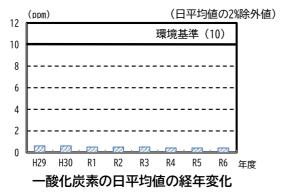
この 2 箇所の測定局では、環境基準が定められている二酸化硫黄、一酸化炭素、浮遊粒子状物質、 光化学オキシダント、二酸化窒素、微小粒子状物質等の化学物質と、大気汚染に深くかかわりのある |風向・風速を測定しています。その他、有害大気汚染物質等についても、東越谷測定局で、毎月 | 回 測定しています。

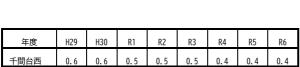

各測定局における測定項目 〇:測定 -:未測定

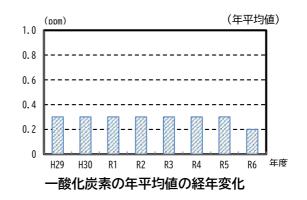
測定項目	東越谷測定局	千間台西測定局	環境基準
二酸化硫黄(SО₂)	0	-	有
一酸化炭素(CO)	-	0	有
浮遊粒子状物質(SPM)	0	0	有
光化学オキシダント(O _x)	0	0	有
二酸化窒素(NO ₂)	0	0	有
微小粒子状物質(PM2.5)	0	0	有
非メタン炭化水素(NMHC)	-	0	無
メタン (CH ₄)	-	0	無
全炭化水素(THC)	-	0	無
一酸化窒素(NO)	0	0	無
窒素酸化物(NOx)	0	0	無
風向(WD)	0	0	無
風速 (WS)	0	0	無

[※] 測定した結果は、埼玉県のホームページで公表しています。

(ア) 二酸化硫黄

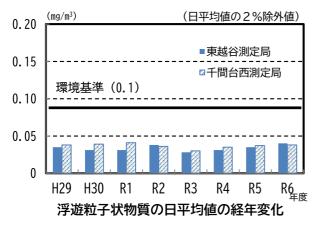

大気中の二酸化硫黄は、主として石油や石炭に含まれる硫黄分の燃焼に伴い排出されたものです。 国内の発生源は工場における重油燃焼によるものがほとんどですが、最近は大陸から偏西風にのって 運ばれてくるものも増えています。高濃度では呼吸器に影響を及ぼすほか、森林や湖沼などに影響を与 える酸性雨の原因物質になるといわれています。令和 6 年度の東越谷測定局の測定結果は、環境基準 を達成していました。

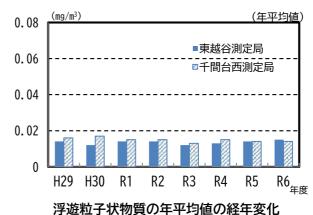



※1「日平均値の2%除外値」・・・値の高い方から数えて2%分の日数を除外した残りの日平均値の中で最高となった日平均値

(イ) 一酸化炭素

化石燃料等の炭素を含む物質が燃焼するとき、酸素(空気)の供給が十分な場合は、完全燃焼して二酸化炭素が発生しますが、酸素(空気)の供給が不十分な場合は、不完全燃焼を起こして一酸化炭素が発生します。主な発生源としては、自動車から排出されます。高濃度では血液中のヘモグロビンと結びつき、血液中の酸素濃度が低下し、この状態が続くと酸欠状態になり、めまい、頭痛、吐き気などの一酸化炭素中毒を引き起こすといわれています。令和 6 年度の千間台西測定局の測定結果は、環境基準(日平均値 10ppm 以下)を達成していました。

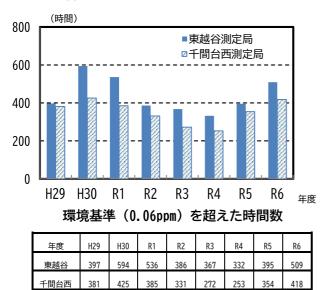


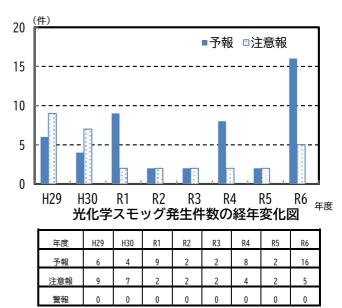


年度	H29	H30	R1	R2	R3	R4	R5	R6
千間台西	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3

(ウ) 浮遊粒子状物質(SPM)

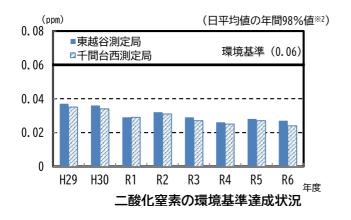
浮遊粒子状物質とは、大気中に浮遊する粒子状物質のうち、粒径 10μm (1cmの 1000 分の 1) 以下の物質をいいます。発生源は工場・事業場や自動車などの人為的なものや、自然界の土壌粒子、海塩粒子など多岐にわたっています。大気中に長時間滞留し、高濃度では粘膜を刺激し、呼吸器への影響を及ぼすといわれています。令和 6 年度の測定結果は、環境基準を達成していました。




年度	H29	H30	R1	R2	R3	R4	R5	R6
東越谷	0.035	0.031	0. 031	0.038	0. 028	0. 031	0. 035	0.040
千間台西	0. 038	0.039	0.041	0.036	0.030	0. 035	0. 037	0. 038

年度	H29	H30	R1	R2	R3	R4	R5	R6
東越谷	0.01	0.012	0.014	0.014	0.012	0. 013	0.014	0.015
千間台西	0.01	0.017	0.015	0.015	0.013	0. 015	0.014	0.014

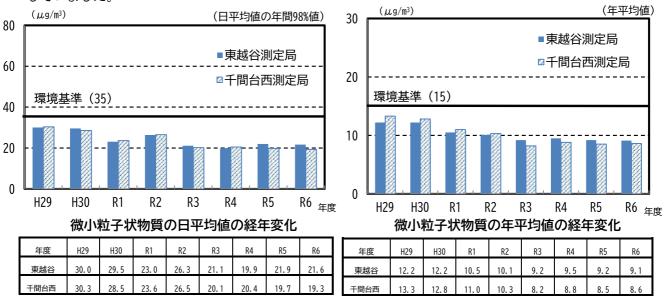
(エ) 光化学オキシダント


光化学オキシダントは、大気中の窒素酸化物と炭化水素が、太陽光(紫外線)の作用によって光化学反応を起こすことなどにより、二次的に生成された酸化性物質の総称です。主に、日射が強い、気温が高い、風が弱いなどの気象条件が揃う夏季に発生し、広域的な汚染傾向が認められています。いわゆる光化学スモッグの原因となり、高濃度では粘膜を刺激し、呼吸器への影響を及ぼすほか、農作物など植物への影響も観察されています。令和6年度は、環境基準(昼間(5~20時)の1時間値が0.06ppm以下)は達成されませんでした。また、1時間値が高濃度(光化学スモッグ注意報発令基準値0.12ppm以上)となった日は5日あり、その内、注意報が発令されたのは5日でした。

(才) 二酸化窒素

二酸化窒素は、主に物の燃焼により発生した一酸化窒素が大気中で酸化されたものです。主な発生源は工場·事業場のほか、自動車からも多く排出されます。高濃度では呼吸器に影響を及ぼすほか、酸性雨及び光化学オキシダントの原因物質になるといわれています。令和 6 年度の測定結果は、環境基準を達成していました。

(ppm) 0.08							(年平:	均値)	
0.00						東越名	測定局	5	
0.06					 Ø	 千間台	 :西測定	·]局	
0.04									
0.02									
0		. 8.			8.				
U	H29	H30	R1	R2	R3	R4	R5	R6 年月	-
		二酸化	窒素(の年平	均值の)経年	変化	+-1.	又


年度	H29	H30	R1	R2	R3	R4	R5	R6
東越谷	0. 015	0.014	0.013	0.012	0.011	0.0126	0.011	0.010
千間台西	0.015	0.014	0.013	0.012	0.011	0. 0125	0.010	0.010

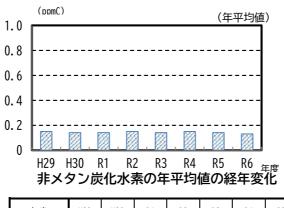
年度	H29	H30	R1	R2	R3	R4	R5	R6
東越谷	0.037	0.036	0. 029	0.032	0.029	0.026	0.028	0.027
千間台西	0. 035	0.034	0.029	0.031	0.027	0. 025	0.027	0.024

※2「日平均値の年間98%値」・・・値の低い方から数えて98%目の日数の番号に該当する日平均値

(力)微小粒子状物質(PM2.5)

微小粒子状物質とは、大気中に漂う直径 2.5μ m以下の小さな粒子のことで、おおよそ髪の毛の太さの 30 分の 1 の大きさです。微小粒子状物質には、物の燃焼等によって直接排出されるもの(一次粒子)と、ガス状の物質として排出されたものが大気中で化学反応を起こし、粒子化するもの(二次粒子)が存在します。主な発生源としては、ばい煙を発生する施設や自動車等があります。微小粒子状物質は粒子の大きさが非常に小さいため、肺の奥深くまで入りやすく、ぜん息や気管支炎等の呼吸器系疾患への影響や肺がんのリスク上昇、循環器系への影響も懸念されています。令和 6 年度の測定結果は、環境基準(1 年平均値が 15μ g/m³ 以下であり、かつ、1 日平均値が 35μ g/m³ 以下であること)を達成していました。

また、微小粒子状物質の成分分析を実施したところ、イオン成分は、春季調査及び夏季調査においては硫酸イオン(SO_4^{2-})が高値を示しましたが、秋季調査及び冬季調査においては硫酸イオン(SO_4^{2-})の濃度が減少し、硝酸イオン(NO_3^-)の濃度が増加する傾向が見られました。また、冬季調査では、塩化物イオン(CI^-)の濃度が増加しました。無機元素成分は、道路粉じん、ブレーキ粉じん又はタイヤ粉じん由来の成分が高濃度で検出される事例が比較的多かったことから、自動車における移動発生源由来の影響の可能性が示唆されました。炭素成分は、四季を通じて元素状炭素(EC)に比べ、有機炭素(OC)が高い傾向で推移していました。


成分名		濃度割台	〉 (%)	
成刀石	春季調査	夏季調査	秋季調査	冬季調査
有機炭素(OC)	36.7	35.0	34.6	27.5
元素状炭素(EC)	6.3	5.3	8.7	7.8
塩化物イオン(Cl ⁻)	0.3	0.0	1.0	2.6
硝酸イオン(NO ₃ -)	2.7	0.5	6.9	18.3
硫酸イオン(SO ₄ ²⁻)	15.2	19.5	9.7	10.3
ナトリウムイオン(Na+)	1.3	0.7	1.0	0.5
アンモニウムイオン(NH₄+)	5.6	6.4	5.0	9.7
カリウムイオン(K ⁺)	0.4	0.5	0.7	0.7
マグネシウムイオン(Mg ²⁺)	0.2	0.1	0.1	0.1
カルシウムイオン(Ca ²⁺)	0.3	0.1	0.1	0.2
無機元素成分	2.7	1.5	1.9	1.7
その他成分	28.4	30.3	30.2	20.7

(キ) 非メタン炭化水素

非メタン炭化水素は光化学オキシダントの原因物質の一つです。水素と炭素からなる炭化水素のうち、メタンを除くものの総称で、揮発性有機化合物(VOC)に含まれます。主な発生源は、ガソリンスタンド、塗装施設のほか、自動車からも排出されます。

非メタン炭化水素については、環境基準が設定されていませんが、午前 6 時から 9 時までの 3 時間 平均値について国が指針値 $(0.20ppmC\sim0.31ppmC^{*3})$ を設定しています。

※3 「ppmC」 炭素換算の容量比百万分率

年度	H29	H30	R1	R2	R3	R4	R5	R6
千間台西	0.15	0.14	0.14	0.15	0.14	0.15	0.14	0.13

(ク) 有害大気汚染物質

有害大気汚染物質は、継続的に摂取した場合には人の健康を損なうおそれがある物質で、大気汚染の原因となるものと定められています。中央環境審議会では、有害大気汚染物質に該当する可能性がある物質として 248 物質を挙げており、その内、健康リスクがある程度高いと考えられる物質を「優先取組物質」として 23 種類を選定しています。東越谷測定局では、優先取組物質等を毎月1回測定しています。令和6年度の測定結果では、環境基準や指針値が定められている物質は、すべて基準を達成していました。

令和6年度 有害大気汚染物質等測定結果

物質名	年平均値 (μg/m³)	環境基準及び 指針値(μg/m³)
ベンゼン	0.69	3
トリクロロエチレン	0.50	130
テトラクロロエチレン	0.061	200
ジクロロメタン	2.1	150
アクリロニトリル	0.023	2
塩化ビニルモノマー	0.045	10
クロロホルム	0.19	18
1, 2-ジクロロエタン	0.093	1.6
1,3-ブタジエン	0.061	2.5
アセトアルデヒド	2.1	120
ホルムアルデヒド	2.9	_*
トルエン	7.0	_
キシレン類	0.95	_
塩化メチル	1.7	94
酸化エチレン	0.062	_

※「-」は、環境基準や指針値が定められていません。

物質名	年平均値 (ng/m³)	環境基準及び 指針値(ng/m³)
ベンゾ〔a〕ピレン	0.066	_
クロム及びその化合物	13	_
水銀及びその化合物	1.5	40
ニッケル化合物	2.9	25
ヒ素及びその化合物	0.48	6
ベリリウム及びその化合物	0.0051	_
マンガン及びその化合物	8.4	140

1-3 大気汚染防止対策

(ア) 固定発生源(工場・事業場等)の動向

固定発生源については、その種類、規模により、大気汚染防止法、県生活環境保全条例の規定に基づき、「ばい煙発生施設」「粉じん発生施設」「揮発性有機化合物排出施設」「指定炭化水素類発生施設」の届出が行われます。

ばい煙発生施設の大気汚染防止法対象施設は、一時期増加傾向にありました。県条例対象施設は、 平成11年4月にダイオキシン対策として、小型焼却炉を追加指定した改正条例を施行したことにより 増加しましたが、条例遵守の指導等により廃止した施設もあり、減少しました。

近年では、ばい煙発生施設数は多少の変動がありますが、粉じん発生施設数、揮発性有機化合物排 出施設数及び指定炭化水素類発生施設数は、ほぼ横ばいです。

○ ばい煙発生施設数の推移

区分	ばい煙発生施設(大気汚染防止法)					指定ばい煙発生施設(県生活環境保全条例)								
年度	H29 H30 R1 R2 R3 R4 R5 R6					H29	H30	R1	R2	R3	R4	R5	R6	
件数	194 196						50	51	52	54	55	55	54	52

【内 訳】

令和6年度 ばい煙発生施設の種類別設置状況

種類	件数
ボイラー	100
金属溶解炉	2
金属加熱炉	0
乾燥炉	4
電気炉	0
廃棄物焼却炉	4
ガスタービン・ガス機関	6
ディーゼル機関	54
施設数合計	170

※施設設置事業場数 90 事業場

令和6年度 指定ばい煙発生施設の種類別設置状況

種類	件数
廃棄物焼却炉 (能力 100kg/h 以上)	2
廃棄物焼却炉 (能力 30kg/h 以上 100kg/h 未満)	7
廃棄物焼却炉 (能力 30kg/h 未満)	43
施設数合計	52

※施設設置事業場数 52 事業場

○ 粉じん発生施設数の推移

区分	一般粉じん発生施設(大気汚染防止法)					指定粉じん発生施設(県生活環境保全条例)										
年度	H29	H30	R1	R2	R3	R4	R5	R6	H29	H30	R1	R2	R3	R4	R5	R6
件数	29	28	28	28	28	28	27	27	54	55	55	55	55	56	57	57

【内 訳】

令和6年度 一般粉じん発生施設の種類別設置状況

種類	件数
堆積場	17
コンベア	9
破砕機、摩砕機	1
施設数合計	27

※施設設置事業場数 7事業場

令和6年度 指定粉じん発生施設の種類別設置状況

種類	件数
堆積場	6
コンベア	45
ふるい	3
ホッパー、バッチャープラント	3
施設数合計	57

※施設設置事業場数 10 事業場

○ 揮発性有機化合物排出施設数の推移

区分		j	軍発性有機化	設 (大気)	(大気汚染防止法)			
年度	H29	H30	R1	R2	R3	R4	R5	R6
件数	2	2	2	2	2	2	3	3

【内 訳】

令和6年度 揮発性有機化合物排出施設の種類別設置状況

種類	件数
グラビア印刷の用に供する乾燥施設	3
施設数合計	3

[※]施設設置事業場数 1事業場

〇 指定炭化水素類発生施設数の推移

区分		指定	炭化水素类	頁発生施設	(県生活環境	竟保全条例)		
年度	H29	H30	R1	R2	R3	R4	R5	R6
件数	131	131	131	131	130	130	139	142

【内 訳】

令和6年度 指定炭化水素類発生施設の種類別設置状況

種類	件数
給油用地下タンク	108
製造設備	20
使用施設	14
施設数合計	142

[※]施設設置事業場数 39 事業場

(イ)固定発生源対策

○ 排出規制

大気汚染防止のため、工場・事業場などの固定発生源については、大気汚染防止法と県生活環境保全 条例に基づき、ばい煙の排出規制を行っています。

光化学オキシダントによる汚染については、「越谷市大気汚染緊急時対策要綱」を定め、オキシダントが高濃度になり、県より注意報などの発令を受けたときは、関係機関等へ通報し、市民への周知を行うとともに情報の収集に努めています。

また、県では多くの燃料を使用している工場等に対して、使用量の削減要請などを行っています。

○ 監視、指導

大気汚染発生源に対する監視、指導のため、随時、大気汚染防止法及び県生活環境保全条例対象の ばい煙発生施設、粉じん発生施設、炭化水素類発生施設等を設置している工場・事業場の立入検査や ばい煙の行政測定を実施しています。工場・事業場に対する立入検査の結果、排出基準や構造基準の 違反があるものに対しては、改善等の指導を行っています。

令和6年度 立入検査状況

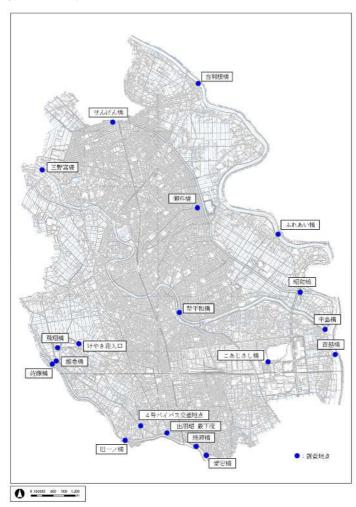
種類	事業場件数	施設件数	行政測定件数	排出基準超過件数
ばい煙発生施設(法・条例)	48	68	5	0
粉じん発生施設(法・条例)	1	5	0	0
特定粉じん排出等作業(法)	1	1	0	0
炭化水素類発生施設(条例)	0	0	0	0
有害大気汚染物質規制対象事業場(条例)	2	2	2	0
合計	54	76	7	0

(ウ) 移動発生源(自動車排出ガス)対策

自動車排出ガス対策については、平成4年6月に自動車NOx法が公布され、平成13年6月に粒子 状物質規制を追加した自動車NOx・PM法に改正されました。県では、この法律に基づき「埼玉県 自動車排出窒素酸化物及び自動車排出粒子状物質総量削減計画」を策定し、達成のための各種施策を 総合的に実施することにしています。また、県生活環境保全条例に基づき、粒子状物質排出基準不適 合車の運行禁止の規制指導及び低公害車導入、アイドリング・ストップの実施等を推進することにより、 自動車排出ガスの影響の低減化を図っています。

また、九都県市(埼玉県・千葉県・東京都・神奈川県・横浜市・川崎市・千葉市・さいたま市・相 模原市)では、この区域の窒素酸化物の約半分が自動車から排出されていることから、自動車からの 窒素酸化物や粒子状物質の排出量の低減に向けた「九都県市低公害車指定制度」を平成8年3月に発 足しています。

市では、公用車の購入に際しては、この基準に適合した車を導入しています。


2. 水質

2-1 現状

市内には、元荒川や綾瀬川など多くの河川や用水が流れています。 昭和 30 年代から 40 年代の高度 経済成長期には、急速な都市化や工場・事業所の進出等により、河川の汚濁が進みましたが、その後の 排水規制の強化や、公共下水道・合併浄化槽の普及、各種啓発活動により、次第に以前の水質を取り戻 しつつあります。近年は、河川汚濁の原因が、工場排水によるものから、生活排水によるものに変わ り、汚濁原因の大部分を占めるようになっています。

2-2 市内河川の調査監視

河川の水質汚濁状況監視のため、主要 5 河川 11 地点と、流入水路 7 地点、大相模調節池 1 地点で調査を行っています。

	河 川 名	調査地点				
	古利根川	古利根橋				
	(大落古利根川)	ふれあい橋				
	新方川	せんげん橋				
	וו על ווא	昭和橋				
河		三野宮橋				
, ,	元 荒 川	新平和橋				
Ш	***************************************	中島橋				
		佐藤橋				
	綾 瀬 川	旧一ノ橋				
	***************************************	綾瀬橋				
	中川	吉越橋				
	御料堀都市下水路	御料橋				
	幹線排水路	越巻橋				
流	出羽堀都市下水路	けやき荘入口				
入		最下流				
水路	蒲生愛宕川	愛宕橋				
ഥ	路	飛翔橋				
	新川	4号バイパス交差点				
大村	目模調節池	こあじさし橋				

河川水質等調査地点

(ア)環境基準等の適合状況

①生活環境項目

生物化学的酸素要求量(BOD)75%値*は、主要河川調査地点 10 地点の全地点で、環境基準値 5mg/ ℓを下回りました。

また、流入水路及び大相模調節池調査地点では、環境基準点が設定されていませんが、調査地点 8地点中3地点で環境基準値5mg/ℓを超過しました。

*75%值評価

環境基準値と比較して水質の程度を判断する場合に用いられる数値で、年間の日間平均値の全データを、その値の小さいものから順に並べ、 $0.75 \times n$ 番目(nは日間平均値のデータ数)のデータ値のことです。年 12 回の測定であれば、 $75\%値は 0.75 \times 12 = 9$ で、低い方から 9 番目(高い方から 4 番目)の数値が基準値に適合しているか否かで判断しています。

②健康項目

健康項目(26 項目)は、「古利根川・ふれあい橋」「新方川・昭和橋」「元荒川・中島橋」「綾瀬川・ 綾瀬橋」の計 4 地点で調査を行っています。これらのほとんどは定量下限値に限りなく近い数値であ り、環境基準値及び指針値を下回る結果でした。

③要監視項目・その他の項目

要監視項目 (33 項目)、その他の項目 (7 項目) について、調査を行っています。これらのほとんど は定量下限値に限りなく近い数値であり、指針値を下回る結果でした。

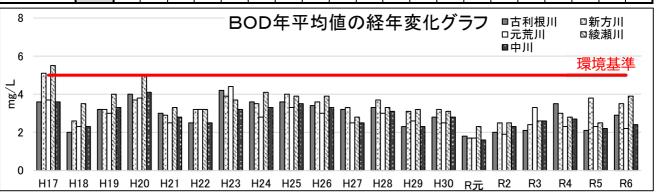
市内主要河川水質 令和6年度平均值

河川名		古利	根川	新力	 5川		元荒川	綾	中川		
項目	単位	古利根橋	ふれあい橋	せんげん橋	昭和橋	三野宮橋	新平和橋	中島橋	佐藤橋	綾瀬橋	吉越橋
水温	$^{\circ}$	20.5	18. 4	21.9	18.4	20.7	19.4	18.7	20.7	18. 1	18.4
透視度	度	58.4	49.4	37.9	38.8	55.4	63.0	60.2	46.9	46.2	45.7
流量	m³/s	13.3	10.1	2.4	10.7	6.6	10.1	14.9	7.4	11.6	77.1
Hq		7.6	7.7	7.6	7.7	7.6	7.5	7.7	7.6	7. 7	7.7
DO DO	mg∕l	8.7	9.8	8.5	8.4	9.6	8.9	9.0	9.2	8.3	8.5
BOD	mg∕l	2.4	2.6	5.1	3.2	2.0	1.6	2.4	2.3	3.1	2.7
COD	mg/ℓ	5.4	5.3	7.8	6.0	4.6	3.9	4.7	5.9	5.7	5.3
SS	mg∕l	8	10	20	14	9	8	9	18	11	12
大腸菌数	CFU/ 100ml	-	290	-	470	-	-	220	-	1900	ï
全窒素	mg∕l	-	3.1	-	3.0	-	-	3.5	-	2.8	-
全りん	mg∕l	-	0.17	-	0.26	-	-	0.27	-	0.21	
全亜鉛	mg∕l	-	0.009	-	0.011	-	-	0.027	-	0.010	-
ノニルフェノール	mg∕ℓ	-	<0.00006	-	<0.00006	-	-	<0.00006	-	-	-
LAS	mg∕l	-	0.0048	-	0.0072	-	-	0.0040	-	-	-
カドミウム	mg∕l	-	<0.0003	-	<0.0003	-	-	<0.0003	-	<0.0003	-
全シアン	mg/ℓ	-	不検出	-	不検出	-	-	不検出	-	不検出	-
鉛	mg∕l	-	<0.001	-	0.001	-	-	<0.001	-	<0.001	-
六価クロム	mg∕l	-	<0.005	-	<0.005	-	-	<0.005	-	<0.005	-
砒素	mg∕l	-	<0.001	-	0.001	-	-	<0.001	-	0.001	-
総水銀	mg∕l	-	<0.0005	-	<0.0005	-	-	<0.0005	-	<0.0005	-
PCB	mg∕l	-	不検出	-	不検出	-	-	不検出	-	不検出	-
ジクロロメタン	mg∕l	-	<0.002	-	<0.002	-	-	<0.002	-	<0.002	-
四塩化炭素	mg∕l	-	<0.0002	-	<0.0002	-	-	<0.0002	-	<0.0002	-
1,2-ジクロロエタン	mg∕l	-	<0.0004	-	<0.0004	-	-	<0.0004	-	<0.0004	-
1,1-ジクロロエチレン	mg∕l	-	<0.002	-	<0.002	-	-	<0.002	-	<0.002	-
シス-1,2-ジクロロエチレン	mg∕ℓ	-	<0.004	-	<0.004	-	-	<0.004	-	<0.004	-
1,1,1-トリクロロエタン	mg∕l	-	<0.0005	-	<0.0005	-	-	<0.0005	-	<0.0005	-
1,1,2-トリクロロエタン	mg/ℓ	-	<0.0006	-	<0.0006	-	-	<0.0006	-	<0.0006	-
トリクロロエチレン	mg∕l	-	<0.001	-	<0.001	-	_	<0.001	-	<0.001	-
テトラクロロエチレン	mg∕ℓ	-	<0.0005	-	<0.0005	-	-	<0.0005	-	<0.0005	-
1,3-ジクロロプロペン	mg∕l	-	<0.0002	-	<0.0002	-	-	<0.0002	-	<0.0002	-
チウラム	mg∕l	-	<0.0006	-	<0.0006	-	-	<0.0006	-	<0.0006	-
シマジン	mg∕ℓ	-	<0.0003	-	<0.0003	-	-	<0.0003	-	<0.0003	-
チオベンカルブ	mg/ℓ	-	<0.002	-	<0.002	-	-	<0.002	-	<0.002	-
ベンゼン	mg∕l	-	<0.001	-	<0.001	-	-	<0.001	-	<0.001	-
セレン	mg/ℓ	-	<0.001	-	<0.001	-	-	<0.001	-	<0.001	-
硝酸性窒素及び 亜硝酸性窒素	mg/l	-	2.1	-	2. 2	-	-	2.7	-	2. 0	-

ふっ素	mg/ℓ	-	0.08	-	0.08	-	-	0.08	-	0.10	-
ほう素	mg∕l	ı	0.06	ı	0.08	ı	-	0.06	ı	0.08	-
1,4-ジオキサン	mg∕l	-	<0.005	-	<0.005	-	-	<0.005	-	<0.005	-
アンモニア性窒素	mg∕l	-	0.3	-	0.4	-	-	0.3	-	0.4	-
硝酸性窒素	mg/ℓ	-	1.9	-	2.1	-	-	2.6	-	1.9	-
亜硝酸性窒素	mg∕l	-	0.09	-	0.09	-	-	0.15	-	0.08	-
りん酸性りん	mg∕l	-	0.13	-	0.24	-	-	0.23	-	0.18	-
電気導電率	mS/m	-	32	-	33	-	-	33	-	37	-
塩化物イオン	mg∕l	-	32	-	36	-	-	35	-	45	-
陰イオン界面活性剤	mg/ℓ	-	<0.01	-	0.01	-	-	<0.01	-	0.01	-

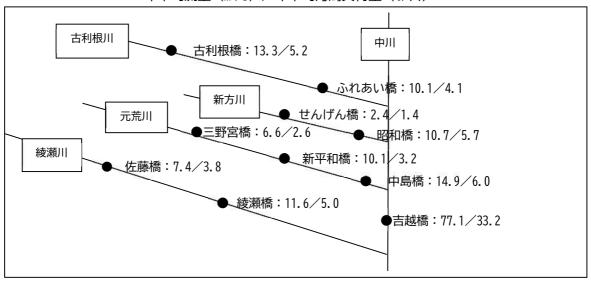
(イ) BODの経年変化

過去に綾瀬川のBOD (生物化学的酸素要求量・河川の汚れの代表的な指標の一つ) が高くなっていましたが、近年では流入する水路 (出羽堀、蒲生愛宕川等) の水質が、公共下水道の整備の進捗等によって全体的に改善傾向にあります。しかし、公共下水道が整備されていない地域では、生活排水が河川の汚濁原因となっています。


BODの毎月調査結果(令和6年度)

(単位:mg/l)

河川名	月	4	5	6	7	8	9	10	11	12	1	2	3	平均	75%値
+40+810	古利根橋	-	1.3	-	2.8	1.3	-	1.3	-	2.1	-	5.7	-	2.4	2.8
古利根川	ふれあい橋	2.8	1.7	2.0	3.2	1.9	2.4	1.8	0.9	1.9	2.9	4.7	5.1	2.6	2.9
┷┺Ш	せんげん橋	-	2.0	-	1.9	2.3	-	2.0	-	3.5	-	19	-	5.1	3.5
新方川	昭和橋	5.0	1.6	2.6	3.2	3.1	2.7	1.9	0.6	2.4	3.5	6.0	6.1	3.2	3.5
	三野宮橋	-	1.7	-	2.1	1.4	-	0.7	-	1.7	-	4.4	-	2.0	2.1
元荒川	新平和橋	-	1.3	-	1.5	1.2	-	1.0	-	1.2	-	3.6	-	1.6	1.5
	中島橋	4.0	1.4	1.8	2.2	1.7	1.6	1.0	0.6	1.0	1.7	5.6	6.4	2.4	2.2
綾瀬川	佐藤橋	-	1.7	-	1.7	2.1	-	1.1	-	3.1	-	4.3	-	2.3	3.1
夜/棋川	綾瀬橋	3.9	1.5	1.7	2.2	2.7	1.9	2.5	1.1	2.6	3.9	8.4	5.0	3.1	3.9
中川	吉越橋	1.9	1.2	1.6	2.2	2.1	2.4	1.5	1.1	2.2	3.9	6.0	5.7	2.7	2.4


BOD年平均値の経年推移(各河川の平均値) (単位:mg/l)

年度 河川	環境 基準	H17	H18	H19	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	R元	R2	R3	R4	R5	R6
古利根川	5. 0	3.6	2.0	3. 2	4. 0	3.0	2.5	4. 2	3.6	3.6	3.4	3.2	3.3	2.3	2.8	1.8	2.5	2. 1	3.5	2.1	2.9
新方川	5. 0	5.1	2.6	3. 2	3. 7	2.9	3. 2	3.9	3.5	4.0	3.6	3.3	3.7	3.1	3. 2	1.7	2.7	2. 4	3.0	3.8	3.5
元荒川	5. 0	3.7	2.3	3.0	3.8	2.5	3. 2	4. 4	2.8	3.3	3.0	2.5	3.0	2.6	2. 5	1.7	2.1	3. 3	2.3	2.3	2. 2
綾瀬川	5. 0	5.5	3.5	4.0	5.0	3.3	3. 2	3. 7	4. 1	3.9	3.9	2.8	3.3	3. 2	3. 1	2.3	2.9	2. 6	2.8	2.5	3.9
中川	5.0	3.6	2.3	3. 3	4. 1	2.8	2.5	3. 2	3. 3	3.5	3.3	2.5	3. 1	2.3	2.8	1.6	2. 4	2. 6	2.7	2.2	2. 4

(ウ) 河川流量・汚濁負荷量

年平均流量(m³/s)/年平均汚濁負荷量(t/日)

2-3 河川浄化対策

水質汚濁を防止するためには、河川や湖沼への汚れの排出量を極力減らすことが必要です。河川の 汚濁原因は、工場・事業場の排水に起因するもの(産業系)と、各家庭の排水に起因するもの(生活系) に大別でき、それぞれに応じた水質汚濁防止対策が求められています。

近年では河川汚濁の原因として、人口の増加や生活様式の変化による生活排水が原因の多くの部分 を占めるようになりました。

(ア) 生活排水対策

公共下水道の整備率(各年度末現在)

指標	H29	H30	R元	R2	R3	R4	R5	R6
供用開始面積(ha)	2,767	2,772	2,773	2,775	2,779	2,781	2,782	2,784
処理人口(人)	284, 200	287, 705	289, 369	290,655	290, 315	289,678	289,029	288, 691
処理世帯(世帯)	127, 298	130, 176	132, 457	134, 669	135, 605	136, 748	138,011	139,509
公共下水道(汚水) 普及率(%)	83. 3	83.8	84. 0	84. 1	84. 2	84. 3	84. 3	84. 4
水洗化人口(人)	271, 457	275, 958	278, 421	280, 134	280, 064	279,652	279, 384	279, 535
水洗化世帯(世帯)	121,505	124, 786	127, 375	129, 714	130, 730	131,926	133, 330	135,018
水洗化率(%)	95. 5	95.9	96. 2	96.4	96.5	96.5	96.6	96.8

浄化槽設置基数の推移(各年度4月1日現在) 単位:基

	H30	R元	R2	R3	R4	R5	R6	R7
単 独	13,065	13, 383	13, 251	12,897	12,740	12,550	11,622	11, 452
合 併	6,712	7,523	7,786	8, 162	8,395	8,633	8,976	9, 245
合 計	19,777	20,906	21,037	21,059	21, 135	21, 183	20,598	20,697
合併浄化槽 普及率(%)	33.9	36.0	37.0	38.8	39.7	40.8	43.5	44.7

(イ) 工場・事業場排水対策

工場・事業場については、水質汚濁防止法や埼玉県生活環境保全条例で排出水が規制されており、市では、これらの規制対象となる工場・事業場に立入検査を行い、排水や排水処理施設の維持管理状況などを検査しています。検査の結果、排水基準を超過した工場・事業場に対しては行政措置を行い、排水基準の遵守徹底を図っています。

令和6年度の立入検査結果では、排水検査を行った106検体のうち16検体が排水基準を超過し、超過率は15%となりました。これらの事業場に対しては、注意等を行うとともに、継続的に監視を行います。

		届出数		規制対象数				
	水質汚濁 防止法	県条例	合計	水質汚濁 防止法	県条例	合計		
越谷市	※323	8	331	81	8	89		
埼玉県	8, 022	212	8, 234	2,905	212	3, 117		

特定事業場・指定排水工場等数(令和6年度)

排水基準超過に対する行政措置件数(令和6年度)

	立入検査	排水検査	排水基準		行政措	置件数	
	件数	件数	超過件数	一時停止命令	改善命令	改善勧告	注意等
越谷市	106	106	16	0	0	1	15
埼玉県	2,277	1, 220	176	0	1	1	173

〇埼玉県において、令和 5 年度の排水基準超過に対する行政措置を令和 6 年度に行ったため、排水基準超過件数と行政措置件数の合計は一致しない

(ウ) 広域的な河川浄化対策

①綾瀬川水環境連絡会(旧:綾瀬川浄化対策協議会)

国土交通省直轄一級河川の中で水質ワースト1という綾瀬川をよみがえらせるために、綾瀬川中・下流に位置する自治体にて、昭和51年4月に綾瀬川浄化対策協議会を発足し、水質・水生生物調査や啓発活動、情報交換会などの水質改善に努めてきました。近年、公共下水道の整備や水質規制の強化、流域住民による清掃活動など取り組みの結果、綾瀬川の水質が改善されたことを受け、平成29年度に解散しましたが、平成30年度より、新たに綾瀬川水環境連絡会を発足し、綾瀬川の水環境の維持、改善に寄与することを目的とした意見交換等を行っています。

②綾瀬川クリーン大作戦

毎年 10 月を「綾瀬川をきれいにする強化月間」及び 10 月第 4 日曜日を「綾瀬川の日」と設定し、 流域住民の活動を中心とした取り組みを、国や埼玉県と協力しながら推進しています。

越谷市では、「綾瀬川をきれいにする強化月間」に、流域の自治会にご協力をいただき、綾瀬川クリーン大作戦を実施しています。令和6年度は、10月6日、13日、20日、27日、11月3日に佐藤橋から蒲生大橋までの区間の清掃活動を1,104人の市民の皆さんの参加で行いました。

[※]この内、総量規制対象事業場数:20事業場

[○]埼玉県の県条例において、水質汚濁防止法との重複分は除く

[○]埼玉県の県条例には、さいたま市条例も含む

③環境用水の導入

綾瀬川の水質改善のため、荒川から取水した水を、埼玉高速鉄道線内に埋設された導水管を通じて、 浄化用水を導水するもので、平成22年4月から実施されています。

また、越谷·草加·八潮の南部葛西用水三市連絡協議会により、逆川及び東京葛西用水、八条用水へ冬水通水を平成23年度から実施しています。

(エ) その他の対策

①大相模調節池水環境連絡会

大相模調節池でアオコが発生していることを受け、令和4年4月1日より、水質調査及び維持管理 の方法等を検討するとともに、相互に情報を提供、交換、共有することで、大相模調節池の水環境の維 持、改善に寄与することを目的に関係機関と「大相模調節池水環境連絡会」を設置しました。

連絡会では、関係機関と情報共有を行うとともに、大相模調節池及び元荒川の取水口の計 6 地点において、定期的(月1回)に水質検査を実施しました。なお、令和 6 年度に実施した大相模調節池の水質検査において、アオコの発生は見られませんでした。

②環境学習

市民の皆さんに身近な河川・水路の状況を理解し、水質汚濁防止の取り組みを進めていただくため、小学校を中心に環境学習を行いました。

実施日	対象	参加人数	学習内容
6月14日	蒲生小学校 4 年生	150 人	・綾瀬川の歴史、汚濁状況等について講義
10月28日	大間野小学校 4 年生	87 人	・綾瀬川の歴史、汚濁状況等について講義
11月23日	ヒマワリこどもエコクラブ	10 人	・綾瀬川の歴史、汚濁状況等について講義

3. 騒音・振動

3-1 騒音の現状

工場・作業場や飲食店営業等の事業場、建設作業及び各種交通機関等から発生する騒音は、睡眠を妨げたり会話を妨害したりするなど生活環境を損なうため、「好ましくない音」、「ない方がよい音」として規制されています。

こうした事業活動に伴う騒音苦情のほか、近年では、家庭で設置している動物よけの機器等から 発生する高周波音や給湯機器から発生する低周波音に関する苦情の相談を受けることもあります。

騒音の特徴としては、「好ましくない音」、「ない方がよい音」と言われるように、心理的な評価を 含んだ言葉で表現されることにあります。音楽等、発生源側では好ましいと感じる音でも、受け手側 では騒音と感じる場合があり、立場の違いで評価が分かれてしまいます。騒音は主として感覚的な ものであるため、周辺の住民に与える影響は、発生源の周辺に限られる場合が多く、誰でも加害者に も被害者にもなりえます。周囲に配慮するよう心掛けることが大切です。

年度	R2	R3	R4	R5	R6
工場・作業場等	31	35	43	35	69
建設作業	16	14	33	38	22
その他	11	13	15	24	17
合計	58	62	91	97	108

騒音苦情内訳(単位:件)

3-2 騒音対策

(ア) 工場・事業場等対策

騒音規制法に基づく特定施設を設置している工場・事業場及び県生活環境保全条例に基づく指定施設を設置又は指定騒音作業を行っている工場・事業場等には、届出義務のほか、規制基準の遵守義務が課せられています。これらの工場・事業場等から発生する騒音が規制基準に適合しないことにより、周辺の生活環境が損なわれていると認めるときは、市は事業者に対し、改善勧告や改善命令を出すことができます。

特定施設の届出数(騒音規制法)

指定施設・指定作業の届出数(県生活環境保全条例)

特定施設の種類	工場数	施設数
金属加工機械	168	945
空気圧縮機・送風機	180	742
土石用・鉱物用破砕機等	7	11
織機	1	40
建設用資材製造機械	7	6
穀物用製粉機	0	0
木材加工機械	38	63
抄紙機	0	0
印刷機械	38	156
合成樹脂用射出成形機	32	229
鋳型造型機	0	0
合 計	471	2, 192

指定施設の種類	工場数	施設数
木材加工機械	30	65
合成樹脂用粉砕機	10	30
ペレタイザー	3	4
コルゲートマシン	1	1
シェイクアウトマシン	0	0
ダイカスト機	3	13
冷却塔	57	98
金属板のつち打加工作業	1	
ハンドグラインダー使用作業	8	
電気のこぎり等使用作業	1	
合 計	114	211

※ 令和7年3月31日現在

(イ)建設作業騒音対策

騒音規制法に基づく特定建設作業及び越谷市環境条例に基づく指定建設作業(特定建設作業以外の くい打ち作業)が、規制対象となっています。

特定建設作業及び指定建設作業に伴い発生する騒音が規制基準に適合しないことにより、周辺の 生活環境が著しく損なわれていると認めるときは、市は事業者に対し、改善勧告や改善命令を出す ことができます。

近年、特に施工方法の改善や建設機械の低騒音化等技術開発が進められており、これらの工法等の 採用により、騒音の軽減が図られるようになってきました。一方で、規制対象外の建設作業の苦情が 増えてきており、事業者は作業前には近隣住民に作業工程や期間の説明を行い、作業について十分 理解を得るように努めるなどの配慮も必要となっています。

 年度
 R2
 R3
 R4
 R5
 R6

 特定建設作業
 61
 73
 80
 78
 63

27

特定建設作業及び指定建設作業実施届出数(単位:件)

特定建設作業届出内訳	(会和 6 年度)
可促進成に未用山門の	

16

20

9

11

作業の 種類	くい打機等	びょう打機	さく岩機	空気圧縮機	コンクリート プラント等	バックホウ	トラクター ショベル	ブルドーザー	合計
件数	2	0	55	4	0	2	0	0	63

(ウ) 自動車騒音対策

指定建設作業

市では法定受託事務である自動車騒音常時監視を毎年実施しています。自動車騒音が一定の限度を超えていることにより、道路の周辺の生活環境が著しく損なわれると認められるときは、市長が都道府県公安委員会に対し、道路交通法の規定により措置をとるよう要請したり、道路管理者等に対して道路構造の改善などの意見を述べることができることとなっています。

令和6年度の市内4地点での調査結果では、夜間の要請限度値を超える地点が1地点ありました。 自動車騒音の防止のためには、自動車自体の構造改善等(例えばエンジンやマフラー、タイヤ)の 発生源対策、道路網整備等の交通流通対策、道路構造の改善、沿道対策などを総合的に推進していく 必要があります。

自動車騒音調査結果(令和6年度)

測定場所	一般国道 4 号 (谷中町)					岩槻線 荻島)	大野島 (南茲	越谷線 灰島)
測定日	R6.10.31~11.1		R6.10.3	1~11.1	R6.10.31~11.1		R6.10.31~11.1	
区域の区分	b 区域		b⊵	区域	b 区域		b 区域	
時間区分	昼間	夜間	昼間	夜間	昼間	夜間	昼間	夜間
測定値	73	72	67	67	72	69	68	64
要請限度	75	70	75	70	75	70	75	70

単位:dB(デシベル) 測定値:等価騒音レベル 昼間:6:00~22:00 夜間:22:00~翌6:00

(工) 鉄道騒音対策

市では、東京・埼玉の武蔵野線沿線 13 市で武蔵野線公害対策連絡協議会を組織し、毎年協議会として騒音・振動測定や、JR東日本とJR貨物に対し騒音・振動対策についての要望・要請活動を行っています。令和6年度は2回の会議が行われました。

(才) 航空機騒音対策

平成 31 年 3 月 29 日から、羽田空港の新飛行経路の運用が開始されました。羽田空港における 風向きによって飛行経路は異なりますが、一日のうち、3 時間程度越谷市上空を航空機が飛ぶことが あります。

新飛行経路運用に伴い、東京都、埼玉県及び神奈川県のうち関係する市区町に対し、羽田空港の機能強化に関する担当部長会議等が開催され、国土交通省からの最新情報の提供や、関係市区町から要望等を伝えることにより、情報共有を行っています。

また、国土交通省東京航空局では、騒音対策のほか、落下物対策にも取り組んでいます。詳細は、 国土交通省東京航空局のホームページ「羽田空港のこれから」で公表されています。

(力) 近隣騒音対策

近年、都市の過密化、生活様式の変化などにより、商店・飲食店、家庭などから発生する騒音に 関する問題も多くなっており、これらの近隣騒音は、今日的な課題となっています。

近隣騒音のうち家庭生活から発生する騒音の解決には、発生原因となる家庭用機器や住宅用設備の 低騒音化や住宅等の遮音性能の向上を図ることも必要ですが、基本的には住民一人ひとりのモラルや マナーの向上が望まれることから、近隣騒音の防止に関する意識啓発が重要となっています。

3-3 振動の現状

振動は、工場・事業場、建設現場及び各種交通機関等の動力源から発生し、地盤振動として地面や 家屋に伝わることで、その中に居住する人に精神的苦痛を与えたり、壁、タイル等のひび割れ等の 物的な損害を与えたりします。

振動が住民に与える影響は、主として感覚的なものが多く、影響の及ぶ範囲は、通常、発生源の 周辺に限られるなど騒音と類似した特性があり、騒音と同一発生源から同時に発生する例が多く見ら れます。

振動苦情内訳 (単位:件)

年度	R2	R3	R4	R5	R6
工場・事業場	1	3	1	4	4
建設作業	3	7	8	3	6
その他	1	3	1	2	0
合計	5	13	10	9	10

3-4 振動対策

(ア)工場・事業場対策

振動規制法に基づく特定施設を設置している工場・事業場及び県生活環境保全条例に基づく指定施設を設置している工場・事業場には、各種届出の義務のほか、規制基準の遵守義務が課せられています。これらの工場・事業場から発生する振動が規制基準に適合しないことにより、周辺の生活環境が著しく損なわれていると認めるときは、市は事業者に対し、改善勧告や改善命令を出すことができます。

特定施設数

特定施設名	工場数	施設数	特定施設名	工場数	施設数
金属加工機械	153	1221	印刷機械	24	115
圧縮機	96	336	ゴム・合成樹脂練用ロール機	8	29
土石用・鉱物用破砕機等	8	12	合成樹脂用射出成形機	25	166
織機	0	0	鋳型造型機	1	13
コンクリートブロックマシン等	0	0	合 計	318	1897
木材加工機械	3	5	* -	令和7年3月	31 日現在

(イ)建設作業振動対策

振動規制法に基づく特定建設作業及び越谷市環境条例に基づく指定建設作業(特定建設作業以外の くい打ち作業)が、規制対象となっています。

特定建設作業及び指定建設作業に伴い発生する振動が、規制基準に適合しないことにより周辺の 生活環境が著しく損なわれていると認めるときは、市は事業者に対し、改善勧告や改善命令を出すこ とができます。

近年、特に施工方法の改善や建設機械の低振動化等技術開発が進められており、これらの工法等の 採用により、振動の軽減が図られるようになってきました。一方で、規制対象外の建設作業の苦情が 増えてきており、事業者は作業前には近隣住民に作業工程や期間の説明を行い、作業について十分 理解を得るように努めるなどの配慮も必要となっています。

特定建設作業及び指定建設作業実施届出数(単位:件)

年度	R2	R3	R4	R5	R6
特定建設作業	34	50	58	57	50
指定建設作業	27	16	20	9	11

特定建設作業届出内訳(令和6年度)

作業の種類	くい打機等	鋼球等	舗装版破砕機	ブレーカー	合計
件数	2	0	1	47	50

(ウ) 道路交通振動対策

市内で測定地点を定めて実態調査を実施しています(令和6年度は4地点)。 令和6年度の測定結果では、要請限度を超える地点はありませんでした。

道路交通振動調査結果(令和6年度)

測定場所	一般国道 4 号 (谷中町)		足立越谷線 (蒲生1丁目)		越谷岩槻線 (南荻島)		大野島越谷線 (南荻島)		
測定日	R6.10.31~11.1		R6.10.3	6.10.31~11.1 R6.10.3		1~11.1	R6.10.31~11.1		
区域の区分	第一種	第一種区域		第一種区域		重区域	第一種	一種区域	
時間区分	昼間	夜間	昼間	夜間	昼間	夜間	昼間	夜間	
測定値	52	49	39	35	47	39	43	35	
要請限度	65	60	65	60	65	60	65	60	

単位:dB(デシベル) 測定値:時間率振動レベル(80%レンジの上端値) 昼間:8:00~19:00 夜間:19:00~翌8:00

4. 化学物質

4-1 現状

私たちの身の回りには様々な化学物質が使用され、私たちの生活を豊かにし、また、便利で快適な 生活を維持するうえで欠かせないものとなっています。しかし、化学物質の中には人や生態系に対す る有害性が科学的に解明されていないものも多く、発がん性や生殖毒性等の影響が懸念されています。

これまでは、工場・事業場から排出される有害化学物質については、大気汚染防止法や水質汚濁防止法などの法律により排出規制等が行われてきましたが、個別の物質ごとに規制する方法のみでは、化学物質による環境汚染に対応することが難しくなってきています。このため、有害な影響を及ぼすおそれがある多くの化学物質について、事業者による自主的な管理と排出削減を促進することにより、環境リスクを低減させていくため、PRTR法が制定されています。(巻末資料①参照)

4-2 化学物質の適正管理対策

市では、条件(巻末資料②参照)を満たす事業者からの届出に基づき集計を行い、市のホームページなどで市民に公表しています。

PRTR法では、前年度に取り扱った第一種指定化学物質**¹ の環境(大気・公共用水域・土壌・埋立処分)への排出量及び移動量(下水道への移動量・廃棄物としての移動量)を、事業所ごと・物質ごとに届け出ることが義務づけられています。

また、埼玉県生活環境保全条例では、特定化学物質(第一種指定化学物質・第二種指定化学物質^{※2}・ 埼玉県生活環境保全条例施行規則で定める化学物質^{※3})の前年度の取扱量を、事業所ごと・物質ごと に届け出ることが義務づけられています。

- ※1 「第一種指定化学物質」 PRTR法施行令第1条で規定している化学物質(462物質)
- ※2 「第二種指定化学物質」 PRTR法施行令第2条で規定している化学物質(100物質)
- ※3 「埼玉県生活環境保全条例施行規則で定める化学物質」 同規則第51条で定める化学物質(44物質)

なお、PRTR法では、令和6年度届出分(令和5年度の把握分)より、対象化学物質の見直し等があり、下記のとおりとなりました。

- ・第 1 種指定化学物質 515 物質、第 2 種指定化学物質 134 物質 合計 649 物質 埼玉県生活環境保全条例においても、上記同様に見直し等により、下記のとおりとなっています。
 - ・第1種指定化学物質 515物質、第2種指定化学物質 134物質
 - ・県条例施行規則で定める物質 14 物質

合計 663 物質

(ア) PRTR法に基づく集計結果

<令和5年度 越谷市における地域別の化学物質排出量及び移動量>

令和6年度提出データ集計結果

地区名	報告件数	抈	‡出量(kg)		移動量	(kg)
地区石	報古什釵	大気	公共用水域	土壌	下水道	事業所外
桜 井 地区	9	57, 440. 4	0.0	0.0	0.0	21,965.0
新 方 地区	0	0.0	0.0	0.0	0.0	0.0
増 林 地区	7	685.7	175. 4	0.0	0.0	1,400.0
大 袋 地区	2	134. 5	0.0	0.0	0.0	0.0
荻 島 地区	2	267.3	7.1	0.0	0.0	0.0
出 羽 地区	11	121, 197. 0	1, 545	0.0	0.0	60,034.0
蒲 生 地区	3	881.8	0.0	0.0	510.0	18,530.0
川 柳 地区	2	9,700.0	0.0	0.0	0.0	400.0
大相模 地区	5	1,035.8	0.0	0.0	0.0	0.0
大 沢 地区	2	249.9	0.0	0.0	0.0	0.0
北越谷 地区	0	0.0	0.0	0.0	0.0	0.0
越ヶ谷 地区	3	16,000.0	0.0	0.0	73.0	32,907.0
南越谷 地区	1	35.1	0.0	0.0	0.0	0.0
合 計	47	207, 627. 5	1, 727. 5	0.0	583.0	135, 236. 0

< 令和5年度 越谷市における業種別の化学物質排出量及び移動量>

令和6年度提出データ集計結果

				コロリナ区		
業種名	報告件数	3	排出量(kg)		移動量	₫ (kg)
未性石	和古什奴	大気	公共用水域	土壌	下水道	事業所外
化学工業	5	115, 546. 2	345.0	0.0	510.0	79,469.0
金属製品製造業	5	25, 700. 0	150.0	0.0	40.0	34,500.0
食料品製造業	1	35, 500. 0	0.0	0.0	0.0	6,000.0
出版・印刷・同関連作業	2	22,700.0	0.0	0.0	0.0	14,000.0
燃料小売業	25	4, 193. 2	0.0	0.0	0.0	0.0
輸送用機械器具製造業	1	2,500.0	0.0	0.0	0.0	0.0
一般廃棄物処理業	2	0.1	32.5	0.0	0.0	0.0
プラスチック製品製造業	1	0.0	0.0	0.0	33.0	207.0
石油製品・石灰製品製造業	1	37.0	0.0	0.0	0.0	0.0
パルプ・紙・紙加工品製造業	1	11.0	0.0	0.0	0.0	0.0
電気機械器具製造業	1	1,440.0	0.0	0.0	0.0	0.0
洗濯業	1	0.0	1,200.0	0.0	0.0	620.0
非鉄金属製造業	1	0.0	0.0	0.0	0.0	440.0
合 計	47	207, 627. 5	1,727.5	0.0	583.0	135, 236. 0

(イ) 県条例に基づく集計結果

<令和5年度 越谷市における地域別の化学物質取扱量>

令和6年度提出データ集計結果

地区名	報告件数	使用量 ^{※1} (kg)	製造量 ^{※2} (kg)	取り扱う量 ^{※3} (kg)	取扱量 ^{※4} (kg)
桜 井 地区	9	450, 300	0	2, 669, 336	3, 119, 600
新 方 地区	0	0	0	0	0
増 林 地区	6	3, 300	0	1, 478, 700	1, 482, 000
大 袋 地区	2	0	0	651,000	651,000
荻 島 地区	2	950	0	786,000	786, 950
出 羽 地区	12	6, 520, 513	0	24, 622, 360	31, 142, 870
蒲 生 地区	3	134, 520	0	771,600	906, 120
川 柳 地区	2	9,700	0	0	9, 700
大相模 地区	5	0	0	3, 175, 000	3, 175, 000
大 沢 地区	2	0	0	807, 200	798, 740
北越谷 地区	0	0	0	0	0
越ヶ谷 地区	3	212, 184	37,500	0	249, 650
南越谷 地区	1	0	0	407,000	407,000
合 計	47	7, 331, 467	37,500	35, 368, 196	42, 728, 630

- ※1「使用量」:事業活動に伴い使用した量
- ※2「製造量」:事業所において製造した量(副生成物も含む)
- ※3「取り扱う量」:入荷した特定化学物質等を自ら使用しないで、事業所において取り扱う量

(例:石油卸売業・燃料小売業等が取り扱うガソリン・灯油等の量が該当)

※4「取扱量」:使用量・製造量・取り扱う量の合計(有効数字の関係上、上記 3 つの合計とは必ずしも一致しない)

<令和5年度 越谷市における業種別の化学物質取扱量>

令和6年度提出データ集計結果

業 種 名	報告件数	使用量(kg)	製造量 (kg)	取り扱う量(kg)	取扱量(kg)
化学工業	6	6, 682, 823	0	22, 910, 096	29, 592, 880
燃料小売業	25	0	0	12, 458, 100	12, 449, 640
金属製品製造業	5	147, 234	25,500	0	172, 700
出版・印刷・同関連作業	2	281,700	0	0	281, 700
プラスチック製品製造業	1	77,950	12,000	0	89,950
食料品製造業	2	92,950	0	0	92, 950
非鉄金属製造業	1	31,120	0	0	31, 120
石油製品・石灰製品製造業	1	7, 300	0	0	7,300
パルプ・紙・紙加工品製造業	1	2, 200	0	0	2, 200
電気機械器具製造業	1	1, 440	0	0	1, 440
輸送用機械器具製造業	1	2,500	0	0	2,500
洗濯業	1	4, 250	0	0	4, 250
合 計	47	7, 331, 467	37,500	35, 368, 196	42, 728, 630

(ウ) 越谷市における化学物質取扱量集計結果

市内で取扱量が多い化学物質のうち、第一種指定化学物質では、トルエン、キシレン、トリメチルベンゼンとなっています。これらの 3 物質は化学工業、燃料小売業において取扱量が多くなっています。

また、埼玉県生活環境保全条例施行規則で定める化学物質では、硫酸(三酸化硫黄を含む。)、メタ ノール、ジメチルアミノエタノールとなっています。これらの3物質は、化学工場等で取扱量が多く なっています。

<令和5年度 越谷市における第一種指定化学物質取扱量>

令和6年度提出データ集計結果

化学物質の名称	使用量(kg)	製造量(kg)	取り扱う量(kg)	取扱量(kg)
トルエン	438, 950	0	14, 200, 100	14,639,050
キシレン	22,320	0	3, 785, 300	3, 807, 620
トリメチルベンゼン	34,000	0	2, 907, 400	2, 932, 940
エチルベンゼン	12,540	0	2, 717, 300	2, 729, 840
ヘキサン	43, 200	0	1, 837, 000	1,880,200
ヘプタン	1,600	0	1, 300, 900	1, 302, 500
シクロヘキサン	0	0	1, 100, 000	1, 100, 000
メチルイソブチルケトン	9,600	0	1, 000, 000	1,009,600

< 令和5年度 越谷市における埼玉県指定化学物質取扱量>

令和6年度提出データ集計結果

化学物質の名称	使用量(kg)	製造量(kg)	取り扱う量(kg)	取扱量(kg)
硫酸(三酸化硫黄を含む。)	6, 200, 920	0	0	6, 200, 920
メタノール	276, 000	0	4, 300, 000	4, 576, 000
ジメチルアミノエタノール	0	0	44,000	44,000
三塩化りん	23,000	0	0	23,000
アンモニア(アンモニア水を含む)	15,900	0	0	15,900

4-3 ダイオキシン類

(ア) 現状

越谷市では、一般環境中におけるダイオキシン類の汚染状態を総合的に把握するため、常時監視を 実施しています。(巻末資料参照)

①大気

季節ごとに年4回の測定を市役所屋上で実施し、4回の測定結果の平均値と環境基準とを比較しました。その結果、令和6年度も環境基準0.6pg-TEQ/m³を下回る結果となりました。

 $(pg-TEQ/m^3)$

年度	H29	H30	R1	R2	R3	R4	R5	R6
大気環境濃度	0.048	0.046	0.020	0.022	0.023	0.021	0.020	0.011

②河川水質

市内の代表的な河川水質について調査したところ、新方川及び綾瀬川で環境基準 lpg-TEQ/ ℓ を上回る結果となりました。

 $(pg-TEQ/\ell)$

年度	H29	H30	R元	R2	R3	R4	R5	R6
新方川	1.1	1.2	1.4	1.5	1.8	1.9	1.2	1.6
綾瀬川	0.95	1.0	1.0	1.2	1.1	1.7	0.95	1. 1
大落古利根川	0.47	0.60	0.49	0.62	0.36	0.71	0.74	0.74
元荒川	0.50	0.59	0.32	0.51	0.87	0.32	1.7	0.42

③河川底質

市内の代表的な河川底質(川底の堆積物など)について調査したところ、すべての調査地点で、環境基準 150pg-TEQ/g を下回る結果となりました。

(pg-TEQ/g)

年度	H29	H30	R元	R2	R3	R4	R5	R6
新方川	1.4	9.5	20.0	11.0	8.5	14	10	7. 4
綾瀬川	1.9	3. 1	3.4	5.9	2.9	3.6	3.7	3.0
大落古利根川	2.9	3. 4	2. 0	5.6	2.5	2.4	5.5	3.6
元荒川	14.0	1.8	1.8	1.1	1.9	2.1	4.3	1.2

④地下水

市内1ヶ所の井戸から採取した地下水の調査を実施しました。その結果、環境基準1pg- TEQ/ℓ を下回る結果となりました。

 $(\text{pg-TEQ}/\ell)$

年度	H29	H30	R元	R2	R3	R4	R5	R6
調査地点	大間野町 一丁目	レイクタウン 六丁目	登戸町	増森一丁目	大成町 八丁目	新越谷 二丁目	新川町 二丁目	谷中町 四丁目
調査結果	0.017	0.017	0.017	0.020	0.014	0.024	0.017	0.018

⑤土壌

市内1ヶ所の土壌の調査を実施しました。その結果、環境基準1,000pg-TEQ/g を下回る結果となりました。 (pg-TEQ/g)

年度	H29	H30	R元	R2	R3	R4	R5	R6
調査地点	蒲生西町 二丁目	東越谷 七丁目	宮本町 五丁目	弥十郎	川柳町 四丁目	増林	レイクタウン 五丁目	向畑
調査結果	4.4	0.13	7. 7	0.50	7.8	0.066	0.0015	0.66

(イ)対策

○固定発生源の動向と対策

ダイオキシン類対策特別措置法では、廃棄物焼却炉などのダイオキシン類発生施設を特定施設と規 定しており、特定施設を持つ事業者には、届出や排出基準の遵守義務とともに、排出ガス・排出水等 の自主測定を行い、排出ガスについては結果を市へ報告する義務があります。(巻末資料参照)

令和6年度末における届出数は、排出ガス特定施設が9施設、排出水特定施設が5施設となっています。

		R6 年度末	R6 年度末
,	特定施設種類		
	4t/h 以上	1	4
	2t/h 以上~4t/h 未満	0	0
 廃棄物焼却炉	200kg/h 以上~2t/h 未満	0	0
庆来初况却炉 	100kg/h 以上~200kg/h 未満	1	1
	50kg/h 以上~100kg/h 未満	3	3
	50kg/h 未満(0.5m³以上)	1	1
	合 計	6	9

排出ガス特定施設

排出水特定施設

特定施設種類					
廃棄物焼却炉に係る廃ガス洗浄施設及び湿式集じん施設及び灰の貯留施設であって、汚水又は廃液を排出するもの	廃ガス洗浄施設及 び湿式集じん施設 灰の貯留施設	1	4		
合 計		1	5		

4-4 放射線・放射性物質

(ア)現状

平成 23 年 3 月 11 日に発生した東日本大震災に伴う東京電力福島第一原子力発電所の事故により、環境中にヨウ素 131、セシウム 134・137 などの放射性物質が拡散しました。国は、平成 23 年 8 月 30 日に放射性物質汚染対処特措法(以下「特措法」という。)を定め、同年 12 月 14 日に「除染関係ガイドライン」を示しました。

越谷市では、地域的には高い放射線量が測定されていませんが、平成23、24年度の測定においては、 雨樋の下などで局所的に高い放射線量が確認されました。このような状況を踏まえ、市民の皆様の安 心安全のため、平成24年1月に「越谷市放射線対策基本方針」を策定し、その後必要に応じ、内容の 見直しを行いながら継続的な放射線対策に取り組んでいます。

平成 25 年度以降は、空間放射線量や給食食材の放射性物質等の測定において、市の目標値を超える数値は検出されていません。

(イ) 空間放射線量の測定等

特措法の基本方針では、追加被ばく線量が年間 20mSv 未満の地域(越谷市含む)については、追加被ばく線量を年間 1mSv 以下とすることを目標としており、市の基本方針においてもこの数値を目標としています。

空間放射線量については、地上 5cm で 1μ Sv/h 未満、地上 50cm、1m で 0.23μ Sv/h 未満とすることを目標としています。

①除染土壌埋設場所の経過測定

(1回目:令和6年10月4~11日、2回目:令和7年3月3~7日)

過去に除染を実施した公共施設 34 ヶ所について、除染土壌埋設場所の地上 5 cm、50 cm、1 m の高さの空間放射線量を年 2 回測定しました。測定の結果、全ての施設が目標値未満でした。

②定点測定

(1回目: 令和6年6月28日、2回目: 令和6年12月2日)

市内の環境中の放射線量の状況を把握するため、市役所及び 13 地区センターの所定の場所の地上 1mの高さの空間放射線量を年 2 回測定しました。測定値は $0.05\sim0.10\,\mu$ Sv/h の範囲でした。

令和6年度定点測定結果

単位:マイクロシーベルト毎時(μSv/h)

Na	测点相式	A ≡C	地子の形状	令和	16年
No.	測定場所	住所	地面の形状	6月28日	12月2日
1	越谷市役所	越ヶ谷四丁目2番1号	インターロッキング	0.06	0.06
2	桜井地区センター	下間久里792番地1	インターロッキング	0.05	0.06
3	新方地区センター	大吉470番地1	インターロッキング	0.07	0.07
4	増林地区センター	増林三丁目4番地1	インターロッキング	0.06	0.07
5	荻島地区センター	南荻島190番地1	インターロッキング	0.06	0.06
6	大袋地区センター	大竹160番地2	アスファルト	0.05	0.05
7	出羽地区センター	七左町四丁目248番地1	インターロッキング	0.06	0.07
8	蒲生地区センター	登戸町33番16号	インターロッキング	0.09	0.07
9	川柳地区センター	川柳町二丁目485番	アスファルト	0.05	0.06
10	大相模地区センター	相模町三丁目42番地1	アスファルト	0.06	0.08
11	大沢地区センター	東大沢一丁目12番地1	インターロッキング	0.08	0.10
12	南越谷地区センター	南越谷四丁目21番地1	インターロッキング	0.05	0.06
13	北越谷地区センター	北越谷四丁目8番35号	インターロッキング	0.07	0.06
14	越ヶ谷地区センター	越ヶ谷四丁目1番1号	タイル	0.07	0.07

(測定機器:日立アロカメディカル㈱シンチレーションサーベイメータTCS172В)

(ウ) 放射性物質の測定

①給食食材

市内の小・中学校及び保育所等の給食食材について、ヨウ素 131 とセシウム 134・137 の測定を行っていましたが、令和 5 年度より休止しています。(給食課・保育施設課・子ども福祉課・市立病院栄養科・障害福祉課・青少年課)

測定施設一覧(休止中)

測定施設	測定する食材
小・中学校	
保育所(園)・認定子ども園・児童発達支援センター	国が実施した食品中の放射性物質
市立病院	検査において、過去3年間で越谷
障害者就労訓練施設しらこばと	市の目標値を超過した品目
学童保育室	

②水道水

越谷・松伏水道企業団で供給している水道水は、約 9 割を県営浄水場より受水し、残り約1割は 区域内の地下水を浄化した水です。県営浄水場の水、地下水を浄化した水について放射性物質(放 射性ヨウ素 131、放射性セシウム 134・137)の検査を実施しており、結果はすべて不検出でした。(越 谷・松伏水道企業団)

(エ) その他

①放射線測定器の貸出

市民の皆様が生活環境等の身近な放射線量を把握できるよう、放射線測定器を貸出していましたが、令和4年度より測定器の貸出は廃止しています。

②近隣市町との連携

放射線対策について連携し、広域的に対応するため、草加市、八潮市、三郷市、吉川市、松伏町 の近隣4市1町と、平成23年9月29日に埼玉県東南部地域放射線対策協議会を設立しました。

5. 悪臭・地盤沈下・土壌

5-1 悪臭の現状

令和6年度に市へ寄せられた悪臭に係る苦情は25件で、前年度より増加しました。主な内訳は、工場・事業場からの工場臭や排水路臭となっています。

悪臭に関する苦情件数

(単位:件)

年度	R2	R3	R4	R5	R6
苦情件数	19	20	20	13	25

(ア)悪臭防止法による規制

悪臭防止法は、規制地域内の工場、事業場の事業活動に伴って発生する悪臭について必要な規制を 行なうこと等により、生活環境を保全し、国民の健康を保護することを目的としており、越谷市にお いては、現在、市内全域において特定悪臭物質による規制を行なっています。

(イ)埼玉県生活環境保全条例による規制

埼玉県では、悪臭の規制を臭気指数による規制と特定悪臭物質による規制を行なっており、どちらか一方の規制方式を選択することとなっています。

越谷市においては、現在、特定悪臭物質による規制方式を取っているため、埼玉県生活環境保全条例で定められた13業種に規制が適用されます。(巻末資料参照)

5-2 地盤沈下

(ア) 現状

地盤沈下は、地盤が広い範囲にわたって徐々に沈んでいく現象であり、いったん沈下するとその復元が不可能な公害で、過剰な地下水の汲み上げが主な原因となっています。過去には、県東部地域の飲料水、工業用水等が地下水に依存していたことから、著しい地盤沈下を起こしましたが、地下水の採取に対して規制されたこと、また上水道として河川表流水の供給が開始されたことにより地下水への依存度が低下し、全体的に地盤沈下の進行速度は鈍化の傾向にあります。

(イ) 地盤高の変動状況

市内の最大沈下量は、令和 4 年の 3.2mm (千間台東) から令和 5 年の 9.7mm (越ヶ谷) へと 6.5mm 増加しました。

/ 11/	, ,		,
(単	177	•	mm .
\ =	11/		

	変動量					5年間の
水準測量点	R元	R2	R3	R4	R5	変動量
蒲生旭町1-75	3.4	-2.0	4.2	4.5	-4.5	5.6
川柳町3-192地先	2.8	-0.7	3.4	4.4	-4.6	5.3
川柳町5-284	2. 1	-0.3	3.6	3. 2	-4.5	4.1
蒲生愛宕町13地先	2.4	1.1	0.2	5.9	-3.5	6.1
南越谷1-5-9	3.0	-3.0	4. 9	4.1	-5.3	3.7
越ヶ谷4-1-1	1.7	-2.1	2.8	4. 4	-5.9	0.9
西新井985	6.6	-2.0	4. 2	1.7	-3.6	6.9
神明町2-385	5.7	-2.5	3.7	3.3	-3.5	6.7
越ヶ谷1700	-0.1	-1.6	3.0	3.3	-9. 7	-5.1
弥栄町1-172-40	-0.3	0.7	3.8	1.4	-5.0	0.6
大成町1-2181-4	1.2	0.4	4.9	1.7	-6.8	1.4
東町1-15地先	0.2	0.8	3.6	0.6	-5.8	-0.6
東町3-354	1.4	0.3	2.8	1.3	-4.7	1.1
南越谷2-5-33地先	2.5	-2.9	5.3	4. 0	-5. 1	3.8
瓦曽根2-2-4地先	1.7	-0.8	3.9	4. 5	-6.0	3.3
大沢3-13-38地先	3.0	0.4	4.1	-0.2	-2.4	4.9
大房989-3地先	3.0	-1.7	3. 1	-1.0	-3.4	0

-1/2#201 = F	変動量					5年間の
水準測量点	R元	R2	R3	R4	R5	変動量
下間久里1169地先	2.8	-4.0	6.1	0.4	-2.6	2.7
平方1	0.6	-3.1	6.4	-0.1	-4. 1	-0.3
平方958-8	1.9	2.5	-0.7	-1.1	-2.9	-0.3
大吉1064-1	2.5	2. 3	2.4	0.8	-4. 2	3.8
大杉459-5	3.1	-1.6	4.6	-0.1	-5. 1	0.9
増林2丁目-33	-0.7	-0.5	1.4	0.3	-5. 6	-5.1
東越谷10-32	0.8	-2.4	3.0	2.4	-9.4	-5.6
千間台東1-14	-0.5	-5.2	2.4	-3.2	-7. 1	-13.6
大吉887-2	0.8	-0.5	4.1	0.3	-6.1	-1.4
向畑684	1.9	1.1	2.0	-0.1	-4. 1	0.8
向畑973	-2. 0	-0.2	6.0	-1.6	-4. 1	-1.9
船渡1869	3. 2	-0.8	4.4	0.7	-5.0	2.5
平方846	0.7	1.2	4.0	-1.6	-3. 2	1.1
相模町2-10	0.0	-2.6	3.3	2.5	-5.8	-2.6
大間野町2-115	2.5	-1.3	3.4	2.2	-3. 2	3.6
増林3−1	3. 2	-4. 6	6.1	-2.1	-9.3	-6.7

(+隆起 -沈下)

(ウ) 地下水揚水量と地盤沈下

地下水は常に地表から補給されていますが、その補給量を上回る地下水を汲み上げると砂層の水だけでは対応しきれず、粘土層から絞り出されます。粘土層は絞り出た水の分だけ収縮され、それが地盤沈下となって現れることから、地下水の揚水量と地盤沈下量は、緊密な相関関係にあります。

越谷市の地下水揚水量(用途別)

(単位:m3/日)

年度	水道用	建築物用	工業用	合計	
R元	10,585.9	2, 075. 1	2, 315. 8	15, 482. 9	
R2	12,702.0	2, 106. 7	2, 325. 5	17, 825. 5	
R3	11,529.9	1, 892. 7	2, 145. 9	16, 283. 5	
R4	10,682.8	1,816.3	2, 120. 3	15, 609. 0	
R5	11,769.3	1,594.3	1,972.8	15, 951. 1	

※上記の用途のほか、農業用・水産養殖業用・非常災害用等公益上の用・その他の用があります。

(工) 地盤沈下対策

地盤沈下対策としては、埼玉県生活環境保全条例で井戸について規制を定めています。また、埼玉 県生活環境保全条例で定める以外の井戸については、市の環境条例で規制を定めています。

5-3 土壌

土壌は、水、大気とともに環境の重要な構成要素であり、人をはじめとする生物の生存の基盤や物質循環の要として、また、水質の浄化や地下水のかん養、食料の生産などにおいて、重要な役割を担っています。土壌汚染は、高度経済成長期を中心に比較的古くから発生していたものと考えられていますが、局所的に発生すること、外観からは発見が困難であることなどから、当時汚染が判明することは少ない状況でした。

しかしながら、近年、環境管理の一環として自主的に汚染調査を行う事業者の増加、工場跡地の売 却の際に調査を行う商慣習の広がり等に伴い、土壌汚染が判明する事例が急増しています。

このような状況から、土壌汚染対策法や埼玉県生活環境保全条例では土壌汚染対策のための制度が 整備されており、越谷市でも土壌汚染による健康被害が生じないように指導等を実施しています。

令和 6 年度に土壌汚染対策法及び埼玉県生活環境保全条例により、越谷市内で土壌汚染状況調査を 実施した件数は1件で、そのうち汚染が判明した件数は0件です。

6. 景観

6-1 ポイ捨て・不法投棄の防止

各団体が行った清掃活動等により集められたごみや不法投棄物の収集・処理を行うとともに、ポイ捨て禁止及び飼い犬のふんの放置防止、不法投棄禁止の啓発看板を設置・配布することにより、地域の快適な生活環境を確保し、清潔できれいな街づくりの推進を図っています。

収集件数

	R2 年度	R3 年度	R4 年度	R5 年度	R6 年度
自治会清掃件数	※252	288	337	360	323
不法投棄件数	706	487	608	446	547

※令和2年度については新型コロナウイルス感染症拡大防止の観点から実施回数が少なくなっています。

7. その他

7-1 空閑地等の雑草除去事業

空閑地等に繁茂した雑草類の除去に関する条例に基づき、雑草が繁茂して周辺の生活環境を阻害している空き地等の所有者等に対して、適切な刈り取りを指導しています。令和 6 年度の雑草等による苦情は 176 件 (内、空き家 45 件) ありました。

空閑地除草委託については、令和3年度で終了しています。

7-2 公害関係苦情

令和6年度の苦情の総件数は180件で、前年度と比べて6件の減少となっています。苦情の内容としては、例年と同様に大気汚染、騒音、悪臭にかかる苦情がほとんどを占めています。

大気汚染苦情は、廃棄物や草木の野外焼却で発生した煙等により、家に臭いがこもり、気分が悪くなるなどの健康被害に関する苦情が大半を占めています。

騒音苦情は、工場や作業場、飲食店のカラオケなどの騒音に加え、マンションなどの解体・建設 作業によるものが大半を占めています。

住工一体の市街化調整区域や準工業地域などにおいて、居住者と事業者との共存が求められる中、 居住者からの事業者への騒音、振動、悪臭にかかる苦情が多くなっています。

公害関係苦情件数の推移

年度	R2	R3	R4	R5	R6
大気汚染	44	48	44	41	26
水質汚濁	17	17	7	5	3
土壌汚染	0	0	0	1	1
騒 音	58	62	91	97	108
振 動	5	14	10	9	10
地盤沈下	0	0	0	1	0
悪臭	19	20	20	13	24
その他	9	12	8	19	8
合 計	152	174	180	186	180